Cray
(A Refere

Cray Supercor
|

NCCS

Building your executable

= Choosing your Compiler
« By default, you will be using PGl
* To change from PGI to GNU
" module swap PrgEnv-pgi PrgEnv-gnu
* To change from GNU to PGl
" module swap PrgEnv-gnu PrgEnv-pgi
 If you do not swap these modules you could link against the wrong
libraries!
= Using the Cray Compiler Wrappers
 Fortran: ftn <-target=catamount>
« C:cc <-target=catamount>
« C++:CC <-target=catamount>
* While using the mpi*** scripts may work, it is not recommended

PGl Compiler Options

Option help: -help <option>
* Must call PGI compiler directly for —help.

Listing file: -Mlist (sorry, not as nice as the X1E)

Additional compile-time information: -Minfo,-Mneginfo
« =[inline|ipal|loop|opt|stat|time|all]
-byteswapio: Swap byte-order for unformatted input/output

+ Useful when moving data between jaguar and phoenix

- Can be used file-by-file, if you want to read one endianness and
write the other

-r[4,8] —i[2,4,8]: Controls interpretation of real and integer

sizes.

« This may affect library compatibility.
« Use —-r8 with —default64 to get proper system libraries

PGI Optimization Flags

-00-4: Set optimization level, -O0 to -O4, default -O2

-fast: “Good” optimizations
* -0O2 -Munroll=c:1 -Mnoframe -Mire

-fastsse: “Good” SSE optimizations
- -fast -Mvect=sse -Mscalarsse -Mcache_align —Mflushz

* You should be striving for at least this level for future multi-core
processors

More Advanced Options

* -Mvect: Control automatic vector pipelining
« -Mipa: Enable Interprocedural Analysis

« -Mscalarsse: Generate scalar sse code with xmm registers; implies —
Mflushz (processor-level flush xmm to zero)

* -Munroll: Enable loop unrolling
* -Minline: Inline all functions that were extracted

If you must ./configure...

= Most configure scripts are confused by cross-compilers
= First thing to try:
e ./configure CC=pgcc F90=pgf90 MPICC=cc MPIF90=ftn

. May also support ~-with-cc= pgcc -with-mpicc=cc
. Iyou want to use CrayPAT, you'll need to edit the Makefile to the cray

wrappers
= Next try
e ./configure CC=pgcc F90=pgf90
. CC/lécrgﬁcros .make, if available, or the makefiles to change the compilers to

= Sed is your friend if you must do this.
* Works well when there’s no MPI tests
= Neither of these will report an error when checking a libc call not
supported by catamount

" You may also be able to use a -~host=x86 64-unknown-linux-
gnu flag to force cross-compilation
* Many configure scripts die with an error when you do this.

= Some configure scripts can be edited to launch tests with and
application launcher, but this is the best case, but extremely rare.

Running your job

= The local XT system does not have any interactive nodes,
you must use PBS

= Remember that for dual-core —-1size=(N/2) where N is
the total number of cores you wish to use.

= The XT application launcher is yod

« —-sz — The number of MPI processes
« -VN — States that you want to use dual core mode
- —SN — States that you want to use single core mode

= All of the node memory is available to you from one core

= You are charged by socket, not by core
- -small pages — Use small memory pages, rather than large

= Can significantly improve TLB misses
= Almost every code will benefit from using this flag
= Almost no code will be hurt by this

Program Execution: Useful Commands

gsub: submit a job to pbs

galter: Change the parameters of a submitted job
gstat: Show status of pbs batch jobs

gdel: Delete your job from the queue

xtshowmesh/xtshowcabs: Shows information about
compute and service partition processors and the jobs
running in each partition

showq: Like gstat, but with more information from the
scheduler

showstart: Estimates when your job will run
« Try ~larkin/scripts/myss.sh

showbf: Shows current backfill

checkjob: Get more information about a specific job
« This is attempt to tell you why your job isn’t running.

Useful MPI Environment Variables

= MPICH_ RANK REORDER METHOD
 Default: (0,4)(1,5)(2,6)(3,7)
- Setto1:(0,1)(2,3)(4,5)(6,7) **Most apps seem to like this**
- Setto 2:(0,7)(1,6)(2,5)(3,4)
« Set to 3: User defined mapping (see man mpi)

MPI COLL OPT ON

« Some MPI collectives could run faster

MPICH_FAST MEMCPY

* Improves the performance of memcpy between 2 nodes on the same
socket, especially for messages larger that 256K.

The MPI man page lists other more advanced variables to
tweak the performance.

Debugging Tools: totalview

Totalview is available on Jaguar
To use: module load totalview

Core file analysis
e $ tv7 a.out core

Launch from within interactive session

* S tv7 <tvopts> yod —a <yodopts> a.out <opts>

* Note: -a is actually a totalview option, not a yod option, which
signifies that all options following should be passed to yod.

Attach to running processes

« Launch totalview as above
* From within totalview, attach to your yod process.

Totalview Users’ Guide:
http://www.etnus.com/Documentation/index.php

Nodeinfo

= |f you don’t specify that you want just XT3 or XT4 you may
get a mix

= At the moment, there’s no way to figure out your node
breakdown after a run

= Before your run, you can use nodeinfo to get critical
information about your nodes

= Add the following to your PBS script
« yod -VN ~larkin/xt3/nodeinfo/nodeinfo

Cray
(A Refere

Cray Sug

The Basics

1.

3.

module load craypat
make clean
make

You must rebuild in order to ensure that the proper symbols are

retained during the build

pat build <-w —u —g <group>> exe <exe+pat>

nght)now tracing is the only option on XT (sampling coming very
soon

-u will trace all user functions

-g: rT)1pi, i0, and heap are useful choices (blas & lapack coming
soon

-T: more advanced, trace/don’t trace individual entry points
Original .o files must remain

. yod exe+pat

Run just like your normally do

pat_report whatever.xf

See man pat_report for details on options

Pat_Report

e

« ca+tsrc : callers w/ source numbers
» ct+src : calltree w/ source numbers
 loadbalance: load balancing information

 txt : default, text report
« ap2 : apprentice 2 input file (can be archived)
- xml : XML, can also be archived

= Default options are shown at the top of the report and
provide a good starting place

= See man pat_report for more options

Gathering Hardware counters

= Build and instrument like before
= Setthe PAT_RT _HWPC environment variable

« 1-9 groups available or you can define specific counters
FP, LS, L1 Misses, & TLB Misses
L1 & L2 Data Accesses & Misses
L1 Accesses, Misses, & bandwidth
Floating Point Mix
Floating Point Mix (2)
Total cycles stalled
Total cycles stalled (2)
Instructions & Branches

9. Instruction cache
- See man hwpc for the complete list

= Rerun your executable
= Run pat_report as before

©® N OAEWDN -~

The PAT API

= You can define specific regions within your code that you
would like to instrument

= Regions work just like functions

" |nclude pat header file
« C: #include <pat_api.h>
 FORTRAN: #include <pat_apif.n>

= pat_region_begin(1,”"Loop1”,ierr)

- Don'’t forget ierr if you're in FORTRAN, ierr is function return value in
C

* Region numbers must be unique, numbers can start at 1
= pat region_end(1,ierr)
= You can also turn profiling off/on with pat_profiling_state()
= See man pat_build for API information

Apprentice 2 (When Pictures speak louder than Words)

= Build, instrument, and run as before

= pat _report —f ap2 —o whatever.ap2 whatever.xf
= module load apprentice2

= app2 whatever.ap2

= Note: Apprentice2 input files are also a useful way to archive
your profile data and can be used as input to pat_report.

